
IEEE TuNSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOI.. 31, N0 9,sI;Pr~.NtBER 1989 1389

A Linear Statistical FET Model U-sing
Principal Component Analysis

JOHN E. PURVIANCE, MEMBER, IEEE, MARK C. PETZOLD, MEMBER, IEEE, AND

CLARENCE POTRATZ

,41mtracf — An important issue in statistical circuit desigu, other than the

algorithms themselves, is the development of efficient, statistically valid

element models. This paper first presents what is needed for a good

statistical model. The standard FET model is shown to be difficult to use in

a statistical simulation, due to the nonlinear relation between FET S

parameters and model parameters. A linear statistical FET model is then

proposed based upon principal component analysis. TMs linear model gives

uncorrelated model parameters. In an example using measured S -parame-

ter data from 900.5 pm GaAs FET’s, 13 uncorrelated model parameters

were needed to model the data from 1 to 11 GHz and at one bias.

Simulation using this linear model and issues relating to bias are discussed.

I. INTRODUCTION

w ITH THE AID of sophisticated computer-aided

design (CAD) software, microwave circuit designs

“can be optimized for a certain performance criterion. These

designs give optimum performance for a fixed set of circuit

parameters (the nominal parameter values). However, when

the parameter values are statistically perturbed from the

nominal values, as happens during manufacturing, the

circuit’s performance is not analyzed or specified. Many

authors have shown that a design optimized for good

performance at a single set of parameter values can per-

form poorly when the parameter values are perturbed [1],

[2]. The purpose of statistical circuit design is to determine

nominal parameter values that give acceptable circuit per-

formance when the parameter values are statistically per-

turbed.

The past focus in statistical circuit design has been

design for high parametric yield, which is the fraction

of circuits which meets specifications when the circuit par-

ameters statistically vary around their nominal values.

Presently, if the statistics of the circuit parameters are

known and if valid statistical models are used, software

tools exist which can determine circuit designs for which

parametric yield is in some sense optimized [3], [4].

An important issue in statistical circuit design, other

than algorithms, is the need for statistically valid and
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efficient element models. This apparently has not been

discussed in the literature except in [5]. This work reported

that FET model parameter statistics affect both the final

values of the statistical circuit design and the estimated

circuit yield. The accuracy in the results of the entire

statistical circuit design and yielcl estimation process de-

pends on the statistical representation of the circuit ele-

ments. This is especially true for accurate yield estimation.

A good statistical model for a circuit element must

represent the importaflt statistical properties of the ele-

ment with a small number of parameters over the operat-

ing range (e.g. frequency and bias) of the element. This

paper proposes a linear statistical FET model. Section II

presents the FET S-parameter statistics for a GaAs FET

and Section HI addresses the statistical validity of a pres-

ent nonlinear IFET model. In Sections IV and V the

proposed linear model is presented and the results of

modeling a 0.5 pm CTaAs FET are given. Section VIII

presents conclusions.

11. FET S-PARAMETER STATISTICS

When a foundry characterizes the RF properties of a

FET they take measurements of the FET’s two-port S

parameters. In general, if many FET’s are measured, each

set of measured S parameters will be different. Therefore,

the S parameters can be modeled as random variables with

a given joint density function which is estimable from the

measured data. The goal of a FET statistical simulation is

to create simulated S parameters which are valid samples

of the measured S-parameter joint density function. To

better understand the requirements for a valid statistical

model, actual measured FET statistics gathered from 90

FET’s will be presented.

The GaAs FET’s were fabricated from January 1987 to

June 1987 using a standard process of TriQuint Semicon-

ductor Inc. [6]. The 0.5 X 300 pm~ FET’s are described in

[5]. S-parameter data were taken on 90 FET’s at two

biases and frequencies from 1 to 26 GHz. A total of 90

FET’s is a small sampling and as a result the density

histograms are rough and not fully filled out. Fig. 1 shc~ws

the densities for the real part of S 11 over the frequencies 1

to 11 GHz. These data are typical of all the FET densities.
Note that these densities are not Gaussian. However it is
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Fig. 1, Marginal densities for the real part of ,S11 over the frequencies

(a) 1 GHz, (b) 3.5 GHz, (c) 6 GHz, (d) 8.5 GHz, and (e) 11 GHz.

possible that if these data were recorded over a shorter

time interval, the densities would be closer to Gaussian.

Samples of the estimated correlation matrix are shown
in Tables I and II. Table I shows the 8 x 8 correlation

matrix of the measured S parameters at 3.5 GHz. Table II

shows the 5 X 5 correlation matrix of the real part of S11

at 1, 3.5, 6, 8.5, and 11 GHz. A valid statistical FET model

must preserve these statistical relationships.

One possible method of statistically modeling the FET

would be to directly model the S parameters from the

measured S-parameter statistics over frequency and bias.

However this solution is difficult because hundreds of

parameters are needed to describe the data in the form in

which they, were measured. These parameters include the

mean, standard deviation, densities, and correlations at

TABLE I
THE 8 x 8 CORRELATION MATRIX OF THE MEASURED S PARAMETERS

AT 3.5 C]Hz: THE ORDERING Is THE REAL AND THEN IMAGINARY

PARTS OF S11, S12, S21, AND SW

1.00 –0.59 –092 – 0.29 –0.59 –002 019 – 0.44
– 0.59 1.00 0.60 – o~6 0.47 0,55 – 0.04 0.72
–092 0.60 1.00 0.01 057 – 0.02 – 0.24 0.44
– (),29 – 0.26 0.01 1.00 –0.10 –041 0.32 – 0.28
–0.59 0.47 0.57 – 0.10 100 0.58 –0,80 0.06

– 0.02 0.55 – 0.02 – 0.41 0.58 1.00 – 0.44 0.21
0.19 – 0.04 – 0.24 0.32 – 0.80 – 0.44 1.00 024

– 0.44 0.72 0.44 – 0.28 0.06 0.21 0.24 1.00

TABLE II

THE 5 x 5 CORRELATION MATRIX OF MEASURED REAL PART OF S11

AT 1, 3.5, 6, 8,5. AND 11 GHz PRESENTED IN THIS ORDER

1.00 0.97 095 0.86 076

0.97 1.00 099 0.94 0.85

0.95 0.99 1.00 0,97 0.90

0.86 0.94 0.97 100 0.98

0.76 0.85 0.90 098 1.00

each frequency and bias. Therefore, a better solution is to

find a model which accurately recreates the S-parameter

statistics while requiring a smaller number of parameters.

III. THE STANDARD NONLINEAR STATISTICAL

FET MODEL

An important premise of this work is that since the S

parameters are the basic RF measurements, the test of a

statistical model must be made against these measured

statistics. The present FET modeling method starts with a

set of jointly distributed random variables (S-parameter

measurements) and maps them using a nonlinear transfor-

mation into another set of random variables, the FET

model parameters ( Cg,, gm, R,, etc.) [71. ln thew, to
recreate the S-parameter statistics using the FET model

parameters two criteria are met: 1) the mapping needs to

be 1 to 1, and 2) the joint density function for the model

parameters must be known. It is this second criterion that

causes the problem. In practice it is difficult to determine

and record the full joint density function of the model

parameters. Generally only the marginal densities, correla-

tions, and cross correlations are recorded. In general this is

not sufficient to recreate the measured S-parameter densi-

ties. This is demonstrated in the following simulation

study.

A. Simulation Sl@y

To determine if the present FET model is statistically

valid when using only the model parameter densities and

correlations, the following study was made. Using two

different assumptions for the measured S-parameter statis-

tics, the resulting FET parameter statistics were deter-

mined. The FET parameters were then statistically mod-

eled by retaining only the marginal densities and the

correlations and cross correlations of the FET parameters.

The FET’s S-parameter statistics were then simulated us-

ing the derived statistics for the FET parameters. A com-

parison was made between the simulated and measured
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TABLE III
REiSULTSOF THE FET MODEL STATISTICALSIMULATION STITDY

S-Parameter Number of Error Average
Density Model Points Range Error

Gaussian and FET 1000 0.04 to 0.07 0.05
correlated

Distributed FET 1000 0.15 to 0.69 0.34
and
correlated

S-parameter statistics to determine if the FET model accu-

rately represents the measured S-parameter statistics. To

measure the errors in the simulated S-parameter data an

error function was developed. The densities of the simu-

lated and the measured S parameters were represented as

histograms, each with 20 bins. The error function is

~ I(count measured i) - (count simulated i) [

error =
izl

total count

where

count measured i = the number of elements in the i th

histogram bin for the measured S-

parameter densities,

count simulated i = the number of elements in the i th

histogram bin for the simulated S-

parameter densities,

total count = the total number of elements in the

histogram.

This error function represents the fraction of incorrectly

placed elements in the histogram representation of the

simulated S-parameter densities.

Two cases were examined using data at 6 GHz. The first

case used S-parameter data that were Gaussian and corre-

lated. The correlation is that of the 6 GHz S-parameter

statistics described in Section II. The means and standard

deviations for the Gaussian distribution were also those of

the Section II data. This is the Gaussian and correlated

case. The second case used the measured 6 GHz S-param-

eter densities and correlations as described in Section II.

This is the distributed and correlated case. A total of 1000

simulated S-parameter measurements were used. Using the

intrinsic FET model [7], the S-parameter data were mapped

into FET model parameter data, thus defining seven model

random variables, Cg,, R,, C~~, G,., tau, Cd,, and g~.

Additionally an eighth variable, designated gdg, was needed

to make the mapping be 1 to 1. The results of this study

are shown in Table III.

Table III shows that the average error in the densities of

the simulated S-parameters was 5 percent when the S

parameters are Gaussian and correlated. When the S-

parameter densities and correlations are as measured and

reported in Section H, the average error is 34 percent. The

large error for the distributed and correlated case indicates

the standard intrinsic FET model poorly represents the

measured S-parameter statistics. An alternative statistical

model is proposed in the next section.

IV. A STATISTICALLY EFFICIENT LINEAR

FET MODEL

The goal of a valid statistical FE,T model is to accurately

simulate the statistical behavior o f the FET S parameters

using a simple model with a smalll number of parameters.

The following approach, based cm principal component

analysis, accomplishes this.

A. Principal Component Analysis

A principal component analysis (PCA) of a set of m

original zero mean, unit variance random variables

(s1, s?, ” “ ., S,,,) creates m new uncorrelated random vari-

ables, the principal components (PC), K1. K2,. . . . Km,

with each PC being a linear combination of the original

variables, that is,

K1 ==bllS1 + b1J2 + . . . + bl#n,

K2 ==bzlS1 + bJ1 + . . . + b2w,Sw,

Km ==bm,lS1+ bw,#& + . . . + b,,lfi,Sfl,

or, in matrix form, K = BS [8]. The coefficients for K1 :are

chosen to make its variance as large as possible. The

coefficients for K 2 are chosen to make its variance as large

as possible, subject tc~ the restriction that K1 (whose

variance has already been maxi mized) be uncorrelated

with K2. This continues in general for all the K ‘s. The

important thing to note here is that the statistical descrip-

tion of the K‘s is simplified because they are uneorrelated.

This paper proposes to use these K‘s as the statistical

model parameters and to use the linear model

s=B-~K

as the statistical FET model.

An important property of the PCA is its ability to

reduce the number of K‘s in the model by identifying the

K‘s which are statistically insignificant. Essentially the

number of significant K‘s needed in the model description

represents the number of independent degrees of freedom

present in the S data. The example which follows deter-

mines that 13 uncorrelated principal components are

needed to represent the S-parameter statistics for a 0.5 pm

GaAs FET from 1 to 11 GHz at one bias. The reduced

model then becomes the 13 coltumns of the B – 1 matrix

that are associated with the 13 significant PC’S.

B. Advantages O! the PCA Model

There are several advantages LO using this approach.

Because this is a linear model, it may be more tolerant of

non-Gaussian S parameters. Certainly the linear model is

much easier to implement. The PC’s are uncorrelated amd

hence this is an advantage in the simulation. In the case of

Gaussian S parameters, the statistical data are preserved

exactly by simply recording the densities of the PC’S. If the

data need to be interpolated over frequency or bias, then

the interpolation using the linear model is straightforward.
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C. Disadvantages of the PCA Model

The biggest disadvantage to this model is that the PC’s

do not directly relate to physical process parameters.

Therefore the PCA model does not scale or track with bias

as the FET model does.

V. EXAMPLES OF THE PRINCIPAL COMPONENT

FET MODEL

Two examples of the PCA model as applied to the

measured FET parameter statistics of Section II are pre-

sented in this section. First a simple PCA model is devel-

oped to model the measured FET data at 6 GHz. Then a

PCA model is developed to model the measured data from

1 to 11 GHz.

–0.962 0.008 –0.139

–0.973 0.081 –0.001
~-lt= –0.575 –0.150 0.019

0:687 – 0:632 0:295

A. 6 GHz PCA Model

First 1000 S parameters were simulated using the densi-

ties and correlations from the 90 measured S parameters

at 6 GHz given in Section II. The model developed from

these data is K = BS and S = B“ lK, where K =

[Kl, ZC2,’ . . , K8] is the PCA model parameter matrix,

S = [the real and imaginary parts of S11, S12, S21, and

S22, in that order], and

B-l=

were arranged into a vector of 40 elements, eight elements

for each frequency times the five frequencies at which the

FET’s were measured. Therefore, the S-parameter data

consisted of 90 vectors of length 40. Each random variable

was normalized to zero mean and unit variance. These

data represent samples from 40 random variables, and

consequently the joint density function has dimension of

40. The densities for the 40 S parameters are not in

general Gaussian or “bell-shaped,” as noted in Section II.

A principal component analysis was initiated on these

data using the S.A.S. statistical analysis package [9] using

the Quartimax rotation. This analysis gave a 40 x 40 coeffi-

cient matrix, B. The S.A.S. analysis indicated that there

were 13 statistically significant principal components. The

appropriate 13 columns of B – 1 were identified. The re-

duced B-1 matrix is partially shown below:

0.117 –0.004 “ “ “ 0.004

0.077 –0.001 . . . –0.004

–0.787 –0.015 . . . – 0.002

0:042 0:001 0.0 –0:021

To test the model the 13 uncorrelated PC’s were simu-

lated according to their marginal densities, which were

obtained using the measured S-parameter data and the

linear model K = BS. Fig. 2 shows the densities for the
first four PC’s ( Kl, K2, KJ, and K4). The PC’s are

uncorrelated but are assumed independent in the simula-

tion. A sample set of 500 points was generated. The

simulated S parameters were then created from the re-

0.98

0.97

0.43

–0.95

–0.51
–0.46

0.03

0.44

0.00
0.06

–0.21

0.08
–0.23

–0.31
0.95
0.23

0.00
0.06

0.87
–0.20

–0.01
–0.06
–0.16
– 0.08

0.01
0.11

– 0.07
–0.08

–0.15
–0.06

0.16
0.85

–0.10

–0.02

–0.05

0.03

0.17
0.81

–0.17
–0.05

–0.04

– 0.08

–0.01

0.03
0.80

0.16
–0.12
–0.12

0.08 –0.13

0.09 0.14

0.00 0.00

0.19 0.00

0.00 0.00

0.00 0.00
0.00 0.00
0.00 0.00

The principal component analysis was performed using the

S.A.S. statistical analysis package [9] using the Quartimax

rotation.

This PCA model along with the 1000 S parameters was

then used to determine the densities of the eight PCA

model parameters. These parameters then were simulated

as independent variables. Using the error function defined

in Section III, the error in the measured versus simulated

S parameters ranged from 0.1 to 0.18, with an average

error of 0.15. This is contrasted with an average error of

0.34 when using the FET model to generate the S-parame-

ter statistics.

B. 1 to 11 GHz PCA Model

This example uses the measured S-parameter data from

90 GaAs FET’s measured at 1, 3.5, 6, 8.5, and 11 GHz at

Id = Id,,. The S-parameter data are in real and imaginary

form. Since there are four S parameters, there are eight

data points for each frequency. The data for each FET

duced order model S = B- l’K, where B-1’ is the 40X 13

reduced parameter matrix.

A comparison was then made between the measured

S-parameter densities and correlations and the simulated

S-parameter densities and correlations. The error for the

S-parameter densities ranged from 0.11 to 0.25 with an

average error of 0.18. Table IV shows the 8 x 8 correlation

matrix of the simulated S parameters at 3.5 GHz, and

Table V shows the 5 X 5 correlation matrix of the simu-

lated real part of S11 at 1, 3.5, 6, 8.5, and 11 GHz. In

general the measured and simulated data matched well, as

is evidenced by an average error of 0.18 and a comparison

of Tables I, II, IV, and V.

VI. SIMULATION USING THE PCA MODEL

After the PCA model has been generated, simulation of

the S parameters is straightforward. Fig. 3 shows a simpli-

fied diagram for the generation of the simulated S param-



.-,. .
PURVIANCE et ai.: A LINEAR STATISTICAL FET MODEL ljY5

-1.52 0.54 2.60

(a)

1

I

-2.38 -0.54 1.31

(b)

-1.72 0.18 2.09

(c)

M L
-2.86 0.08

(d)

3.02

Fig. 2. Densities for the first four principal components for the 1 to 11

GHz PCA model: (a) K1, (b) K2, (c) KS, and (d) K4.

eters. An important point is that all the S-parameter data

over frequency are generated by one pass through this

simulation algorithm.

VII. A STATISTICAL MODEL FOR ld = I~J, \2

The S-parameter data were also analyzed for the bias

Id= 1~,,/2. A comparison was made between the S-

parameter statistics at the two biases, and they appear to

have little in common. It is speculated that the PC’s for the

Id = Id,, bias will not be sufficient to describe the statistics

at Id = Id$~/2. Therefore the number of model parameters

will approximately double if the model is to be valid at

two bias points. More work needs to be done in this area

to overcome this apparent difficulty.

VIII. CONCLUSIONS

There were two main goals of this work. One was to

examine the standarcl FET model and determine if it is

statistically valid. Using a simulation study the average

error in the S-parameter densities, as defined by our error

function, is 0.05 for the Gaussian and correlated case and

0.34 for the distributed and correlated case. The simulation

TABLE IV
THE 8 x 8 CORRELATION MATRIX OF THE SIMULATED ~ PARAMETERS

AT 3.5 GHz: ORDERING Is REAL AND IMAGINARY PARrS

OF Ml, S12, S21, S22
—

1.00 –0.59 --093 --0.35 – 0.60 0.01 0.16 –042
–0.59 1.00 0.60 -0.20 0.45 0.54 0.02 070
–093 0.60 1.00 0.10 0.57 – 0.05 –0.19 ‘ 040
–0.35 – 0.20 0.10 1.00 –0.05 – 0.43 0.28 –025

– 0.60 0.45 0.57 -0.05 1,00 0.57 –0.80 003
0.01 0.54 --0.05 – 0.43 0.57 1.00 – 0.4’2 0.21
0.16 0.02 -0.19 (),~~ – 0.80 – 0.42 1.00 028

– 0.42 0.70 0.40 – 0.25 0.03 0.21 0.28 1.00

TABLE V
THE 5 x 5 CORRELATIONMATRIX OF SIMULATEDREAL PARTOFS11 Ar

1, 3.5, 6.8.5. AND 11 GHz. IN THIS ORDER. ——
1.00 0,97 0.95 0.87 0.77

0.97 Loo 1.00 0.94 0.86

0.95 100 1.00 0.97 0.90
0.87 0.94 0.97 1.00 0.98
0.77 0.86 0.90 0.98 1.00 —

create 13 independent
samples of the ki gs

according to their
densities

“~—

t

cS = K B-l’

T
1

[ =
Interpolate :For

intermediate frequency
i. t needed

“T
STOP

Fig. 3. Slmuiatlon chagram for the calculation of the simulated S
parameters using the PC,4 model

used only the model parameter correlations and densities.

In the case of non-Gaussian S parameters, the FET model

is statistically poor. Since measuredl S-parameter data are

shown to be non-Gaussian, a new statistical modeling

technique is desired.

The second objective of this work was to propose a new’

linear statistical model that does not depend as heavily

upon the Gaussian assumption. A modeling technique

based on principal component analysis of the measured

S-parameter data was proposed and demonstrated. This

model used 13 uncorrelated parameters (PC’S) to describe

the FET statistics from 1 to 11 GHz at one bias. In

addition the model is linear. The S-parameter means and

standard deviations must also be recorded as the data were
normalized prior to analysis. The average’ errors for the

simulated S parameters were 0.15 for the 6 GHz model

and 0.18 for the 1 to 11 fGHz model.
In summary the PCA model requires, for each frequency

of interest, S-parameter means, standard deviations, the

coefficients of the B – 1’ matrix, and the densities for the

principal components. These data form the entire statisti-
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cal model. Note that the present S-parameter data sup-

plied by the foundry constitute a subset of these data.
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