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A Linear Statistical FET Model Using
Principal Component Analysis

JOHN E. PURVIANCE, MEMBER, 1IEEE, MARK C. PETZOLD, MEMBER, IEEE, AND
CLARENCE POTRATZ

Abstract — An important issue in statistical circuit design, other than the
algorithms themselves, is the development of efficient, statistically valid
element models. This paper first presents what is needed for a good
statistical model. The standard FET model is shown to be difficult to use in
a statistical simulation, due to the nonlinear relation between FET §
parameters and model parameters. A linear statistical FET model is then
proposed based upon principal component analysis. This linear model gives
uncorrelated model parameters. In an example using measured §-parame-
ter data from 90 0.5 pm GaAs FET’s, 13 uncorrelated model parameters
were needed to model the data from 1 to 11 GHz and at one bias.
Simulation using this linear model and issues relating to bias are discussed.

I. INTRODUCTION

ITH THE AID of sophisticated computer-aided

design (CAD) software, microwave circuit designs
‘can be optimized for a certain performance criterion. These
designs give optimum performance for a fixed set of circuit
parameters (the nominal parameter values). However, when
the parameter values are statistically perturbed from the
nominal values, as happens during manufacturing, the
circuit’s performance is not analyzed or specified. Many
authors have shown that a design optimized for good
performance at a single set of parameter values can per-
form poorly when the parameter values are perturbed [1],
[2]. The purpose of statistical circuit design is to determine
nominal parameter values that give acceptable circuit per-
formance when the parameter values are statistically per-
turbed.

The past focus in statistical circuit design has been
design for high parametric yield, which is the fraction
of circuits which meets specifications when the circuit par-
ameters statistically vary around their nominal values.
Presently, if the statistics of the circuit parameters are
known and if valid statistical models are used, software
tools exist which can determine circuit designs for which
parametric yield is in some sense optimized [3], [4].

An important issue in statistical circuit design, other
than algorithms, is the need for statistically valid and
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efficient element models. This apparently has not been
discussed in the literature except in [5]. This work reported
that FET model parameter statistics affect both the final
values of the statistical circuit design and the estimated
circuit yield. The accuracy in the results of the entire
statistical circuit design and yield estimation process de-
pends on the statistical representation of the circuit ele-
ments. This is especially true for accurate yield estimation.

A good statistical model for a circuit element must
represent the important statistical properties of the ele-
ment with a small number of parameters over the operat-
ing range (e.g. frequency and bias) of the element. This
paper proposes a linear statistical FET model. Section 11
presents the FET S-parameter statistics for a GaAs FET
and Section III addresses the statistical validity of a pres-
ent nonlinear FET model. In Sections IV and V the
proposed linecar model is presented and the results of
modeling a 0.5 pm GaAs FET are given. Section VIII
presents conclusions.

II. FET S-PARAMETER STATISTICS

When a foundry characterizes the RF properties of a
FET they take measurements of the FET's two-port §
parameters. In general, if many FET’s are measured, each
set of measured S parameters will be different. Therefore,
the S parameters can be modeled as random variables with
a given joint density function which is estimable from the
measured data. The goal of a FET statistical simulation is
to create simulated S parameters which are valid samples
of the measured S-parameter joint density function. To
better understand the requirements for a valid statistical
model, actual measured FET statistics gathered from 90
FET’s will be presented.

The GaAs FET’s were fabricated from January 1987 to
June 1987 using a standard process of TriQuint Semicon-
ductor Inc. [6]. The 0.5x300 pm? FET’s are described in
[5]. S-parameter data were taken on 90 FET’s at two
biases and frequencies from 1 to 26 GHz. A total of 90
FET’s is a small sampling and as a result the density
histograms are rough and not fully filled out. Fig. 1 shows
the densities for the real part of S11 over the frequencies 1
to 11 GHz. These data are typical of all the FET densities.
Note that these densities are not Gaussian. However it is
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Fig. 1. Marginal densities for the real part of S11 over the frequencies

(a) 1 GHz, (b) 3.5 GHz, (¢) 6 GHz, (d) 8.5 GHz, and (e) 11 GHz.

possible that if these data were recorded over a shorter
time interval, the densities would be closer to Gaussian.

Samples of the estimated correlation matrix are shown
in Tables I and II. Table I shows the §x8 correlation
matrix of the measured S parameters at 3.5 GHz. Table II
shows the 5X 5 correlation matrix of the real part of §11
at 1, 3.5, 6, 8.5, and 11 GHz. A valid statistical FET model
must preserve these statistical relationships.

One possible method of statistically modeling the FET
would be to directly model the S parameters from the
measured S-parameter statistics over frequency and bias.
However this solution is difficult because hundreds of
parameters are needed to describe the data in the form in
which they were measured. These parameters include the
mean, standard deviation, densities, and correlations at

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 37, NO. 9. SEPTEMBER 1989

TABLE I
THE 8 X 8 CORRELATION MATRIX OF THE MEASURED S PARAMETERS
AT 3.5 GHz: THE ORDERING IS THE REAL AND THEN IMAGINARY
PARTS OF S11, S12, S21, AND S22

1.00 -059 -092 -029 -059 -002 019 -0.44
-0.59 1.00 0.60 —-026 0.47 0.55 —-0.04 0.72
-092 0.60 1.00 0.01 057 —-0.02 -024 0.44
-029 -0.26 0.01 1.00 —-010 -041 032 -0.28
-0.59 0.47 057 -0.10 100 0.58 —0.80 0.06
-0.02 055 —-0.02 -041 0.58 1.00 —044 0.21

019 -0.04 —-024 032 -080 —044 1.00 024
—0.44 0.72 044 —0.28 0.06 0.21 0.24 1.00

TABLE II

THE 5 X5 CORRELATION MATRIX OF MEASURED REAL PaRT OF S11
AT 1, 3.5, 6, 8.5, AND 11 GHZ PRESENTED IN THIS ORDER

095
099
1.00
0.97
0.90

0.86
0.94
0.97
100
098

076
0.85
0.90
0.98
1.00

1.00
0.97
0.95
0.86
0.76

0.97
1.00
0.99
0.94
0.85

each frequency and bias. Therefore, a better solution is to
find a model which accurately recreates the S-parameter
statistics while requiring a smaller number of parameters.

III. THE STANDARD NONLINEAR STATISTICAL
FET MoODEL

An important premise of this work is that since the S
parameters are the basic RF measurements, the test of a
statistical model must be made against these measured
statistics. The present FET modeling method starts with a
set of jointly distributed random variables (S-parameter
measurements) and maps them using a nonlinear transfor-
mation into another set of random variables, the FET
model parameters (Cyss 8ms R, etc) [7]. In theory, to
recreate the S-parameter statistics using the FET model
parameters two criteria are met: 1) the mapping needs to
be 1 to 1, and 2) the joint density function for the model
parameters must be known. It is this second criterion that
causes the problem. In practice it is difficult to determine
and record the full joint density function of the model
parameters. Generally only the marginal densities, correla-
tions, and cross correlations are recorded. In general this is
not sufficient to recreate the measured S-parameter densi-
ties. This is demonstrated in the following simulation
study.

A. Simulation Study

To determine if the present FET model is statistically
valid when using only the model parameter densities and
correlations, the following study was made. Using two
different assumptions for the measured S-parameter statis-
tics, the resulting FET parameter statistics were deter-
mined. The FET parameters were then statistically mod-
eled by retaining only the marginal densities and the
correlations and cross correlations of the FET parameters.
The FET’s S-parameter statistics were then simulated us-
ing the derived statistics for the FET parameters. A com-
parison was made between the simulated and measured
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TABLE III
RESULTS OF THE FET MODEL STATISTICAL SIMULATION STUDY
S-Parameter Number of Error Average
Density Model Points Range Error
Gaussian and  FET 1000 0.04 to 0.07 0.05
correlated
Distributed FET 1000 0.15 t0 0.69 0.34
and
correlated

S-parameter statistics to determine if the FET model accu-
rately represents the measured S-parameter statistics. To
measure the errors in the simulated S-parameter data an
error function was developed. The densities of the simu-
lated and the measured S parameters were represented as
histograms, each with 20 bins. The error function is

20

Y |(count measured i) — (count simulated )|
i1

error =
total count

where

count measured i = the number of elements in the ith
histogram bin for the measured S-
parameter densities,

count simulated i =the number of elements in the ith

histogram bin for the simulated S-

parameter densities,

the total number of elements in the

histogram.

total count =

This error function represents the fraction of incorrectly
placed elements in the histogram representation of the
simulated S-parameter densities.

Two cases were examined using data at 6 GHz. The first
case used S-parameter data that were Gaussian and corre-
lated. The correlation is that of the 6 GHz S-parameter
statistics described in Section 1I. The means and standard
deviations for the Gaussian distribution were also those of
the Section II data. This is the Gaussian and correlated
case. The second case used the measured 6 GHz S-param-
eter densities and correlations as described in Section II.
This is the distributed and correlated case. A total of 1000
simulated S-parameter measurements were used. Using the
intrinsic FET model [7], the S-parameter data were mapped
into FET model parameter data, thus defining seven model
random variables, C,, R, C, G, tau, Gy, and g,.
Additionally an eighth variable, designated g,,, was needed
to make the mapping be 1 to 1. The results of this study
are shown in Table IIL

Table IIT shows that the average error in the densities of
the simulated S-parameters was 5 percent when the S
parameters are Gaussian and correlated. When the S$-
parameter densities and correlations are as measured and
reported in Section II, the average error is 34 percent. The
large error for the distributed and correlated case indicates
the standard intrinsic FET model poorly represents the
measured S-parameter statistics. An alternative statistical
model is proposed in the next section.
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IV. A STATISTICALLY EFFICIENT LINEAR
FET MoDEL

The goal of a valid statistical FET model is to accurately
simulate the statistical behavior of the FET S parameters
using a simple model with a small number of parameters.
The following approach, based on principal component
analysis, accomplishes this.

A. Principal Component Analysis

A principal component analysis (PCA) of a set of m
original zero mean, unit variance random variables
(S, 85,04+, S,,) creates m new uncorrelated random vari-
ables, the principal components (PC), K1, K2,---, Km,
with each PC being a /inear combination of the original
variables, that is.

K1=56,8;+b,8,+ - +b.,.5,
K2=0,8,+b,S8,+---+b,,.8,

Km=5b,S+b,,S,+ - +b,,.S,

mm—m

or, in matrix form, K = BS [8]. The coefficients for K1 are
chosen to make its variance as large as possible. The
coefficients for K2 are chosen to make its variance as large
as possible, subject to the restriction that K1 (whose
variance has already been maximized) be uncorrelated
with K2. This continues in general for all the K’s. The
important thing to note here is that the statistical descrip-
tion of the K ’s is simplified because they are uncorrelated.
This paper proposes to use these K’s as the statistical
model parameters and 1o use the linear model

S=B'K

as the statistical FET model.

An important property of the PCA is its ability to
reduce the number of K ’s in the model by identifying the
K’s which are statistically insignificant. Essentially the
number of significant K ’s needed in the model description
represents the number of independent degrees of freedom
present in the S data. The example which follows deter-
mines that 13 uncorrelated principal components are
needed to represent the S-parameter statistics for a 0.5 um
GaAs FET from 1 to 11 GHz at one bias. The reduced
model then becomes the 13 columns of the B! matrix
that are associated with the 13 significant PC’s.

B. Advantages of the PCA Model

There are several advantages 1o using this approach.
Because this is a linear model, it may be more tolerant of
non-Gaussian S parameters. Certainly the linear model is
much easier to implement. The PC’s are uncorrelated and
hence this is an advantage in the simulation. In the case of
Gaussian S parameters, the statistical data are preserved
exactly by simply recording the densities of the PC’s. If the
data need to be interpolated over frequency or bias, then
the interpolation using the linear model is straightforward.
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C. Disadvantages of the PCA Model

The biggest disadvantage to this model is that the PC’s
do not directly relate to physical process parameters.
Therefore the PCA model does not scale or track with bias
as the FET model does.

V. EXAMPLES OF THE PRINCIPAL COMPONENT
FET MoDEL

Two examples of the PCA model as applied to the
measured FET parameter statistics of Section II are pre-
sented in this section. First a simple PCA model is devel-
oped to model the measured FET data at 6 GHz. Then a
PCA model is developed to model the measured data from
1 to 11 GHz

—0962 0008 —0.139

0973 0081 —0.001
B-V_|-0575 —0150  0.019
0687 —0632 0295

A. 6 GHz PCA Model

First 1000 S parameters were simulated using the densi-
ties and correlations from the 90 measured S parameters
at 6 GHz given in Section II. The model developed from
these data is K =BS and S=B7!K, where K=
[K1,K2,:--,K8] is the PCA model parameter matrix,
S = [the real and imaginary parts of S11, S12, $21, and
S$22, in that order], and

0.98 000 0.0

097 006  0.06

043 -021 087
p-1_|—095 008 -020
051 -023 —0.01

—0.46 —031 —0.06

003 095 —0.16

044 023 —008

The principal component analysis was performed using the
S.A.S. statistical analysis package [9] using the Quartimax
rotation.

This PCA model along with the 1000 S parameters was
then used to determine the densities of the eight PCA
model parameters. These parameters then were simulated
as independent variables. Using the error function defined
in Section III, the error in the measured versus simulated
S parameters ranged from 0.1 to 0.18, with an average
error of 0.15. This is contrasted with an average error of
0.34 when using the FET model to generate the S-parame-
ter statistics.

B. 1to 1l GHz PCA Model

This example uses the measured S-parameter data from
90 GaAs FET’s measured at 1, 3.5, 6, 8.5, and 11 GHz at
I,=1, . The S-parameter data are in real and imaginary
form. Since there are four S parameters, there are eight
data points for each frequency. The data for each FET

0.01
0.11
—0.07
—0.08
—0.15
—0.06
0.16
0.85
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were arranged into a vector of 40 elements, eight elements
for each frequency times the five frequencies at which the
FET’s were measured. Therefore, the S-parameter data
consisted of 90 vectors of length 40. Each random variable
was normalized to zero mean and unit variance. These
data represent samples from 40 random variables, and
consequently the joint density function has dimension of
40. The densities for the 40 S parameters are not in
general Gaussian or “bell-shaped.” as noted in Section II.

A principal component analysis was initiated on these
data using the S.A.S. statistical analysis package [9] using
the Quartimax rotation. This analysis gave a 40 X 40 coeffi-
cient matrix, B. The S.A.S. analysis indicated that there
were 13 statistically significant principal components. The
appropriate 13 columns of B~! were identified. The re-
duced B~! matrix is partially shown below:

0117 —0.004 0.004
0077 —0.001 ~0.004
—0.787 —0.015 ~0.002
0042 0.001 —0.021

To test the model the 13 uncorrelated PC’s were simu-
lated according to their marginal densities, which were
obtained using the measured S-parameter data and the
linear model K = BS. Fig. 2 shows the densities for the
first four PC’s (K;, K,, K5, and K,). The PC’s are
uncorrelated but are assumed independent in the simula-
tion. A sample set of 500 points was generated. The
simulated S parameters were then created from the re-

-010 -0.04 0.08 -0.13
-0.02 -0.08 0.09 0.14
—0.05 -0.01 0.00 0.00
0.03 0.03 0.19 0.00
0.17 0.80 0.00 0.00
0.81 0.16 0.00 0.00
-017 -0.12 0.00 0.00
—-0.05 =012 0.00 0.00

duced order model S= B VK, where B~ " is the 40X 13
reduced parameter matrix.

A comparison was then made between the measured
S-parameter densities and correlations and the simulated
S-parameter densities and correlations. The error for the
S-parameter densities ranged from 0.11 to 0.25 with an
average error of 0.18. Table IV shows the 8 X8 correlation
matrix of the simulated S parameters at 3.5 GHz, and
Table V shows the 5X5 correlation matrix of the simu-
lated real part of S11 at 1, 3.5, 6, 8.5, and 11 GHz. In
general the measured and simulated data matched well, as
1s evidenced by an average error of 0.18 and a comparison
of Tables I, II, IV, and V.

VI. SIMULATION UsSING THE PCA MODEL

After the PCA model has been generated, simulation of
the S parameters is straightforward. Fig. 3 shows a simpli-
fied diagram for the generation of the simulated S param-
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Fig. 2. Densities for the first four principal components for the 1 to 11
GHz PCA model: (a) Kj, (b) K,, (¢) K3, and (d) K.

eters. An important point is that all the S-parameter data
over frequency are generated by one pass through this
simulation algorithm.

VIL. A STATISTICAL MODEL FOR I =14./2

The S-parameter data were also analyzed for the bias
I,=1,,/2. A comparison was made between the S-
parameter statistics at the two biases, and they appear to
have little in common. It is speculated that the PC’s for the
I, =1, bias will not be sufficient to describe the statistics
at I,=1, /2. Therefore the number of model parameters
will approximately double if the model is to be valid at
two bias points. More work needs to be done in this area
to overcome this apparent difficulty.

VIII. CONCLUSIONS

There were two main goals of this work. One was to
examine the standard FET model and determine if it is
statistically valid. Using a simulation study the average
error in the S-parameter densities, as defined by our error
function, is 0.05 for the Gaussian and correlated case and
0.34 for the distributed and correlated case. The simulation
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TABLE 1V
THE 8 X § CORRELATION MATRIX OF THE SIMULATED S PARAMETERS
AT 3.5 GHz: ORDERING IS REAL AND IMAGINARY PARTS
oF 511, S12, 8§21, §22

100 -059 -093 ~-035 -—0.60 0.01 016 042
-0.59 1.00 0.60 -0.20 0.45 0.54 0.02 0.70
-093 0.60 1.00 0.10 057 -0.05 -019 0.40
-035 -0.20 0.10 1.00 -005 -043 028 —-025
~0.60 0.45 0.57 ~0.05 1.00 057 —0.80 003

0.01 054 —0.05 —043 0.57 1.00 -042 0.21

0.16 002 -019 028 —0.80 -042 1.00 028
—0.42 0.70 040 —0.25 0.03 0.21 0.28 1.00

TABLE V

THE 5 X 5 CORRELATION MATRIX OF SIMULATED REAL PART OF S11 AT
1, 3.5, 6, 8.5, AND 11 GHz, 1N TH1s ORDER

1.00 0.97 0.95 0.87 0.77
0.97 1.00 1.00 0.94 0.86
0.95 100 1.00 0.97 0.90
0.87 0.94 0.97 1.00 0.98
0.77 0.86 0.98 1.00

0.90

" create 13 independent
samples of the ki's
according to their
densities

]
=

Interpolate for
intermediate frequency
if needed

STOP

Simulation diagram for the calculation of the simulated S
parameters using the PCA model

Fig. 3.

used only the model parameter correlations and densities.
In the case of non-Gaussian S parameters, the FET model
is statistically poor. Since measured S-parameter data are
shown to be non-Gaussian, a new statistical modeling
technique is desired. ‘

The second objective of this work was to propose a new
linear statistical model that does not depend as heavily
upon the Gaussian assumption. A modeling technique
based on principal component analysis of the measured
S-parameter data was proposed and demonstrated. This
model used 13 uncorrelated parameters (PC’s) to describe
the FET statistics from 1 to 11 GHz at one bias. In
addition the model is linear. The S-parameter means and
standard deviations must also be recorded as the data were
normalized prior to analysis. The average errors for the
simulated S parameters were 0.15 for the 6 GHz model
and 0.18 for the 1 to 11 GHz model.

In summary the PCA model requires, for each frequency
of interest, S-parameter means, standard deviations, the
coefficients of the B~' matrix, and the densities for the
principal components. These data form the entire statisti-
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cal model. Note that the present S-parameter data sup-
plied by the foundry constitute a subset of these data.
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